Electrical control of Faraday rotation at a liquid–liquid interface†

Monica Marinescu,*a Alexei A. Kornyshev*b and Michael E. Flatté*c

Received 5th November 2014, Accepted 27th November 2014
DOI: 10.1039/c4fd00210e

A theory is developed for the Faraday rotation of light from a monolayer of charged magnetic nanoparticles at an electrified liquid–liquid interface. The polarization fields of neighboring nanoparticles enhance the Faraday rotation. At such interfaces, and for realistic sizes and charges of nanoparticles, their adsorption–desorption can be controlled with a voltage variation <1 V, providing electrovariable Faraday rotation. A calculation based on the Maxwell-Garnett theory predicts that the corresponding redistribution of 40 nm nanoparticles of yttrium iron garnet can switch a cavity with a quality factor larger than 10^4 for light of wavelength 500 nm at normal incidence.

Introduction

Recent theoretical and experimental advances in electrovariable nanooptics have focused attention on the electrically controllable optical response of nanoparticles (NPs) at liquid–liquid interfaces. Many of them are based on the interface between two immiscible electrolyte solutions (ITIES),1–3 such as that formed between aqueous and organic oil salt solutions. Semiconductor NPs localized at the interface have been predicted to experience large electric fields, which can produce dramatic room-temperature Stark shifts in the optical transmission.4 The reversible assembly of charged NPs at the ITIES has been predicted to occur as a result of applied potentials as low as ~ 1 V.4 The reflection and transmission coefficients for light incidence on a monolayer of localised metallic NPs were calculated,5,6 showing a dramatic frequency shift and linewidth broadening of the surface plasmon resonance. The optical properties of gold NPs adsorbed at an ITIES have also been measured.7 The properties of magnetic NPs at such an interface, however, have not been explored to date, despite the extensive literature

† Electronic supplementary information (ESI) available. See DOI: 10.1039/c4fd00210e

*Department of Mechanical Engineering, Faculty of Engineering, Imperial College, London, SW7 2AZ, UK. E-mail: m.marinescu@imperial.ac.uk

b Department of Chemistry, Faculty of Natural Sciences, Imperial College, London, SW7 2AZ, UK. E-mail: a.kornyshev@imperial.ac.uk

c Optical Science and Technology Center and Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242, USA. E-mail: Michael_Flatte@mailaps.org

This journal is © The Royal Society of Chemistry 2015 Faraday Discuss., 2015, 178, 363–370 | 363
on metallic and insulating magnetic NPs in solution, such as iron, cobalt, ferrite, and magnetite ferrofluids, including measurements of Faraday rotation. Theoretical and experimental studies have shown that Faraday rotation by magnetic NPs in a non-magnetic matrix depends on the volume fraction of NPs. Here we predict that an ITIES with a ferrofluid component provides opportunities for electrically tuning the Faraday rotation, using modest ITIES-sustainable voltages, with possible applications in spectroscopy and for electrically switchable Faraday devices such as optical isolators. With a proper balance of forces between negatively charged NPs, controlled through the pH of the solution and the Debye screening length of the electrolytes, NPs are adsorbed at ITIES spontaneously to block the energetically unfavorable water–oil interface. When the aqueous phase is sufficiently positively polarized with respect to the oil phase, the NPs are dispersed in the bulk, whereas for negative voltages they are strongly driven into the ITIES. The applied static magnetic field causes the magnetization of the NPs to orient in the same direction. An increase in the Faraday rotation from localized NPs is expected, as a result of the nanoplasmonic interaction between neighboring particles.

Theory

We have calculated the Faraday rotation angle caused by magnetic NPs assembled at the ITIES according to the Maxwell-Garnett theory, and compared it to the rotational angle caused by the same number of NPs dispersed in the bulk. Tuning

Fig. 1 When a voltage is applied to the interface of two immiscible electrolytic solutions, two back to back electrical double layers are formed, resulting in an electric field localized at the interface. That electric field interacts with the negatively charged nanoparticles to localize them at the interface or move them to the bulk of the aqueous phase. (a) The potential is such that the NPs remain in the bulk of the liquid, forming a dilute solution. (b) The potential is such that the NPs migrate to the liquid–liquid interface where, due to the interaction between the polarization fields, they produce a larger Faraday rotation. Not drawn to scale.
of the Faraday rotation angle is explored for an optical cavity (Fabry–Perot) geometry, in which the direction of light propagation and the magnetic field are perpendicular to the ITIES, and the electrodes are transparent, as shown in Fig. 1. For 40 nm radius NPs of yttrium iron garnet (YIG), tuning of the Faraday rotation angle by \(\pi/2 \) for 500 nm wavelength light is feasible for an optical cavity with a quality factor \(Q \) in excess of \(10^4 \). The main steps in the mathematical derivation and the main model predictions are presented below.

Faraday rotation can be described as the result of imaginary, anti-symmetric, off-diagonal components of a dielectric permittivity tensor; for a magnetic field \(B_z \):

\[
\tilde{\epsilon} = \begin{pmatrix}
\varepsilon_x & iA & 0 \\
-iA & \varepsilon_y & 0 \\
0 & 0 & \varepsilon_z
\end{pmatrix},
\]

(1)

for which \(|\varepsilon_x - \varepsilon_y| \ll A \), as is the case in typical magnetic materials. The polarization angle of linearly-polarized light propagating through a medium with the dielectric tensor of eqn (1) is rotated by an angle per unit length \(\Theta = (k_x - k_y) / 2 \), which is proportional to the difference between the wave numbers of the left and right circularly polarized components:

\[
k_{\pm}^2 = (\omega^2/c^2)(\varepsilon \pm A)^{-1}.
\]

(2)

The polarizability of a sphere of radius \(R \) is given by the Clausius–Mossotti expression

\[
\tilde{\alpha} = R^3 \tilde{\epsilon} - \tilde{\epsilon}_s, \\
\]

(3)

where \(\tilde{\alpha} \) is the effective polarizability, \(\tilde{\epsilon} \) is the dielectric permittivity tensor of the sphere material, which has the form of eqn (1), and \(\tilde{\epsilon}_s = \varepsilon_s I \) is the dielectric permittivity of the surrounding fluid, with \(I \) the unit matrix. We assume for simplicity that \(\varepsilon_s \) is the same for both electrolyte solutions. For a suspension of small particles homogeneously dispersed in the bulk of a liquid, the diagonal and off-diagonal elements of the effective permittivity tensor are\(^{17}\)

\[
\varepsilon_b = \varepsilon_s + \frac{3f \varepsilon_s (\varepsilon - \varepsilon_s)}{3\varepsilon_s + (1 - f)(\varepsilon - \varepsilon_s)}, \\
A_b = \frac{3f \varepsilon_s A}{3\varepsilon_s + (1 - f)(\varepsilon - \varepsilon_s)},
\]

(4a)

(4b)

where the volume fraction of NPs is denoted by \(f \). In the limit of \(f \ll 1 \), the expressions coincide to those found for highly dilute solutions,\(^4\) and eqn (4a) becomes the standard Maxwell-Garnett expression.\(^{15,18}\) For a system with just enough NPs to cover the interface in a monolayer, \(f = (4/3)(\pi R^2 n_s / l) \), where \(l \) is the depth of the bulk region (the dimension along the path of the incident light in Fig. 1) and \(n_s \) the number of particles per unit area of the interface. The corresponding Faraday rotation per unit length for a bulk region with dispersed nanoparticles (\(\theta_b \)) is then calculated from eqn (2) with \(\varepsilon \to \varepsilon_b \) and \(A \to A_b \).

The dielectric permittivity of a \(2R \)-thick monolayer (or submonolayer) of NPs at the liquid–liquid interface where the Faraday rotation occurs is given by
\[\tilde{\epsilon}_m = (1 - n_s\pi R^2) \epsilon_{\|} + \frac{4\pi n_s}{2R} \tilde{\alpha}_m. \] (5)

The first term in eqn (5) accounts for the unoccupied ITIES surface, while the second term provides the contribution of the NPs present at the interface. In the case where the two liquids on either side of the ITIES have significantly different permittivities, the expression in eqn (5) needs to be adjusted; here, for simplicity, we neglect the usually minor difference in the refractive indices of the two phases (this difference can be accounted for using the method of ref. 6). For a hexagonal lattice of NPs at the interface, \(n_s = \frac{Q}{(2\sqrt{3}R^2)} \), where \(Q = N/N_{\text{max}} \) is the coverage of the monolayer: the number \(N \) of NPs present at the interface relative to the maximum occupation number \(N_{\text{max}} \). The polarizability of the monolayer can be calculated as in eqn (8) of ref. 16.

\[\tilde{\alpha}_m = \hat{\alpha}(\| + \hat{\alpha}\hat{U})^{-1}, \] (6a)

\[\hat{U} = \frac{U_0\Theta^{3/2}}{\alpha^3\epsilon_s} \begin{pmatrix} -1/2 & 0 & 0 \\ 0 & -1/2 & 0 \\ 0 & 0 & 1 \end{pmatrix}. \] (6b)

Here \(U_0 = 11.03 \) defines the dipole–dipole interaction within the lattice and is constant for a given lattice type, here chosen as hexagonal; \(a \) is the minimum lattice constant, corresponding to \(N = N_{\text{max}} \). Eqn (6) is valid for an average distance between neighboring particles of a few radii, as no multipole interactions are considered, and in the limit of long wavelengths of incident light compared to the lattice constant.

From eqn (1), (3) and (6), \(\tilde{\alpha}_m \) can be calculated:

\[\tilde{\alpha}_m = \frac{\epsilon_s R^3}{\gamma} \begin{pmatrix} 2 & 4iB \frac{(C-2)^2}{(C-2)^2} & 0 \\ 2 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \gamma = \frac{\epsilon + 2\epsilon_s}{\epsilon - \epsilon_s}. \] (7a)

\[B = \frac{3\epsilon_s A}{(\epsilon - \epsilon_s)(\epsilon + 2\epsilon_s)}, \quad C = \frac{R^3 U_0\Theta^{3/2}}{\gamma a^3}. \] (7b)

From eqn (5) and (7), \(\epsilon_m \) can be calculated and thus, the corresponding Faraday rotation. In the limit of a vanishing dipole–dipole interaction, by identifying \(2\pi n_s R^2 \to 3f \) and taking the limit of a dilute solution \((1 - n_s\pi R^2) \to 1\), the results for the bulk, eqn (4), are retrieved.

Results

Fig. 2 displays the net rotation in radians caused by NPs dispersed in the system for a transparent magnetic material commonly used in Faraday isolators, yttrium iron garnet (YIG). Full coverage of the interface is not crucial in obtaining a
sizeable rotation difference between the nanoparticle-covered and the free interface.

The voltage-dependent coverage of an ITIES with functionalized NPs as a function of the applied electrical potential has been calculated based on the free energy profile of a single NP at the ITIES.4,5 Localised NPs were allowed to interact pairwise via screened electrostatic forces. Depending on the system parameters such as the NP size and charge, the contact angle with the two liquids, and the magnitude and polarity of the applied field, a stable or metastable bound state of the NP arises at the interface. Parameters for the free energy calculation used here are taken from ref. 5.† The increasing coverage of the ITIES with NPs for an increasingly positive applied potential is depicted in Fig. 3 for three NP sizes.

For a system with NP radius $R = 40$ nm and $\varepsilon = 4.84$, the rotation per unit length in the bulk, θ_b, and in the monolayer, θ_m, are 4×10^{-2} rad m$^{-1}$ and 10^4 rad m$^{-1}$ respectively. The net rotation when all particles are dispersed in the bulk liquid is

Fig. 2 Faraday rotation caused by NPs in the bulk and at the interface depends on the interfacial coverage and the NP size. The total number of NPs in the system is that necessary for a monolayer coverage. Parameter values: $\varepsilon_s = 1.78$, $\varepsilon = 4.84$, $\lambda = 500$ nm, $\theta \leq 5 \times 10^4$ rad m$^{-1}$.21

Fig. 3 A small variation in the applied potential drop between the oil phase and aqueous phase changes the interfacial coverage I dramatically. This is the combined result of the energy profile of a single NP and the electrostatic repulsion between NPs at the interface. Curves were calculated following ref. 5 and 22, as described in ESI.† Parameter values: $\varepsilon_1 = 78.8$ (water), $\varepsilon_2 = 10.7$ (1,2 dichloroethane), $z = -4000$, $\kappa_1 = 5 \times 10^7$ m$^{-1}$ (0.2 mM), $\kappa_2 = 6 \times 10^8$ m$^{-1}$ (5 mM), $\sigma_{12} = 0.03$ N m$^{-1}$, $\mu = 10^{-11}$, $\theta_{\text{contact}} = 0.55\pi$.

This journal is © The Royal Society of Chemistry 2015 Faraday Discuss., 2015, 178, 363–370 | 367
The change in the Faraday rotation upon accumulation of NPs at the interface originates from the enhancement of the off-diagonal dielectric polarizability of a single NP due to the polarization fields of neighboring NPs. As more NPs populate the ITIES, the distance between them decreases and the polarizability enhancement becomes stronger, reaching a maximum for full coverage.

Discussion

Although the rotation of the polarization angle upon one pass through the interface is modest, the effect is amplified in a high quality factor cavity. The
criteria for switching the cavity from completely transmissive to reflective is that the shift in resonant frequency due to the altered Faraday rotation would exceed the cavity linewidth \((= \omega/Q\), where \(\omega\) is the resonant frequency of the cavity). This would occur for a cavity with a quality factor \(Q > 10^4\).

Conclusions

We have presented a geometry for electrically-controllable Faraday rotation due to nanoparticle accumulation at a liquid–liquid interface. The enhanced polarization of the nanoparticles due to their accumulation at the interface leads to an enhancement of the normal-incidence Faraday rotation. This effect should be visible in a high quality factor \((Q > 10^4)\) optical cavity. For a small electrochemical cell and voltages less than 1 V, electrical switching of a Faraday isolator can be achieved in this geometry.

As a concluding note, we emphasize that other nonlinear optical effects are possible that involve switching the Faraday rotation due to NP accumulation at the interface. As an example, in Fig. 5 we show a waveguide geometry. Here the highly anisotropic linear polarization of the nanoparticles when accumulated at the interface, seen from eqn (6), leads to an efficient quenching of the Faraday rotation for light propagating parallel to the interface. The linear birefringence that causes the quenching of the Faraday rotation can be compensated for with other linear birefringent elements in an optical device.

Acknowledgements

M. E. F. acknowledges an ARO MURI. A.A.K. acknowledges the European Science Foundation FP7-MPP-2011 grant “Nanodetector” and the grant of the Engineering and Physical Sciences Research Council UK, EP/L02098X/1.

References