Exact Theory of One-Phonon Amplitudes in Diffractive Atom–Surface Scattering

M.E. Flatté
Department of Physics, University of California, Santa Barbara, CA 93106, USA

Abstract I derive an expression for the probability of creating or annihilating one long-wavelength surface or bulk phonon during a scattering event in a system with diffraction scattering. This expression depends on the bulk elastic constants but is independent of force constant changes near the surface and of the details of the atom-target potential. If the inelastic scattering is weak (as defined in the text), the expression is exact.

In a system where the only elastic scattering is specular, the bulk elastic constants of the target and the quantum numbers of the decoupled atom-target system entirely determine the probability for the weak inelastic creation (or annihilation) of a long-wavelength phonon [1]. A heuristic explanation follows of why an expression with similar qualities should also exist for systems with non-specular elastic scattering. In particular, the expression is independent of (1) deviations of force constants from bulk values near the surface of a target uncoupled to atoms and (2) the functional form of the atom-target interaction potential $V(\vec{r}; \{\vec{u}_i\})$, where \vec{r} is the position of the colliding atom and \vec{u}_i the displacement of the i'th target atom.

Displacements in the surface region associated with a phonon of small wave-vector \vec{q} are quasi-rigid for $(qa)^{-1}$ layers perpendicular to the surface, where a is the lattice constant. If $qa \ll 1$, force constant changes in a few layers near the surface are irrelevant to the displacements associated with this phonon.

The functional form of V is irrelevant because to lowest order in qa, the first-order expression for the probability is proportional to

$$\left[\int_{V} \langle \Psi_o^{(1)} | \vec{r} \rangle \frac{\partial V(\vec{r})}{\partial z} \langle \vec{r} | \Psi_o^{(2)} \rangle d\vec{r} \right]^2.$$ (1)

Here $V(\vec{r}) = V(\vec{r}; \{0\})$ and the $|\Psi_o\rangle$'s are wave functions of the atom-rigid target system with the same crystal momentum parallel to the surface (\vec{K}) and energy (E). When there is only elastic scattering, the case with
a rigid target, for a given \(\vec{K} \) and \(E \) there is a discrete set of asymptotic perpendicular momenta \(k_{\vec{G}} \) the atom may have. These channels, incoming if \(k_{\vec{G}} < 0 \), outgoing if \(k_{\vec{G}} > 0 \), are labelled by surface reciprocal lattice vectors \(\vec{G} \). The atom involved in an inelastic scattering process where \(qa \ll 1 \) will emerge near one of these channels. The probability that the atom emerges near channel \(\vec{G}_o \) is calculated by choosing the amplitude of all incoming channels except \(\vec{0} \) to be 0 for \(|\Psi_o^{(1)}| \), and the amplitude of all outgoing channels except \(\vec{G}_o \) to be 0 for \(|\Psi_o^{(2)}| \). When both wave functions are normalized to unit incoming flux in channel \(\vec{0} \), the integral represents the total force applied in transferring the atom from incoming channel \(\vec{0} \) to outgoing channel \(\vec{G}_o \). This is rigorously given by the change in perpendicular momentum per unit time and area, i.e., \(-\hbar(k_{\vec{0}} + k_{\vec{G}})\).

The results are exact in the limit where the following conditions are satisfied:

\[
\frac{\hbar}{M c b} \ll 1 \quad (2a) \quad \frac{m}{M} \left(\frac{V_o}{\hbar \omega_D} \right)^2 \ll 1 \quad (2b) \quad E_a \lesssim \hbar \omega_D \quad (2c)
\]

\[
k_B T \lesssim \hbar \omega_D \quad (2d) \quad qa \ll 1 \quad (2e),
\]

where \(c \) is a characteristic velocity of a phonon in the target, \(b \) is the range of the atom-target potential and \(V_o \) is its depth. \(m \) is the mass of the colliding atom and \(E_a \) is its incident energy. \(M \) is the mass of a target atom, \(\omega_D \) is the Debye frequency, and \(T \) is the temperature of the target.

The condition (2a) allows one to stop the expansion of \(V \) after the first order term

\[
V(\vec{r}; \{ \vec{u}_i \}) = V(\vec{r}) + \vec{u}_i \cdot \nabla_{\vec{u}_i} V(\vec{r}; \{ \vec{0} \})
\]

Condition (2b) ensures that in calculating the inelastic scattering, the last term in (3) can be treated to lowest order.

Derivation of the Probability for Production of Long-Wavelength Phonons

This derivation requires the use of a variational principle developed for multichannel scattering in nuclear collisions [2]. The following assumptions simplify this presentation: (1) the atom only interacts with the uppermost layer of target atoms and (2) the units are chosen so that the target’s volume and the area of its interacting surface are 1. The results remain unchanged if these assumptions are dropped.
To first order in \(\{ u_i \} \), the Hamiltonian consists of an unperturbed Hamiltonian \(H_0 \), which ignores phonon coupling to the colliding atom, and \(H_1 \), which couples the atom linearly to the phonons.

\[
H = H_{\text{particle}} + H_{\text{target}} + V(\vec{r}, \{ \vec{u}_i \}) = H_0 + H_1 + O(u^2)
\]

(4)

where

\[
H_0 = \frac{p^2}{2m} + \sum_{\vec{q}, \nu} \hbar \omega_{\vec{q}, \nu} n_{\vec{q}, \nu} + V(\vec{r}) \quad (5a)
\]

\[
H_1 = \sum_{i, \alpha} \frac{\partial V}{\partial u_{i, \alpha}} (\vec{r})u_{i, \alpha}. \quad (5b)
\]

Here \(\alpha \) denotes a cartesian coordinate and \(n_{\vec{q}, \nu} = a_{\vec{q}, \nu}^\dagger a_{\vec{q}, \nu} \) is the occupation of phonon mode \(\vec{q}, \nu \), where \(\nu \) is the phonon's branch.

Let \(|\Psi^{(1)}\rangle \) and \(|\Psi^{(2)}\rangle \) be two wave functions for the combined target-atom system with the same \(E \) and \(\vec{R} \). Their asymptotic form is

\[
\langle \vec{r}|\Psi^{(\mu)}\rangle = \sum_{\{n\}, \vec{G}} \langle \{n\} \rangle e^{i(\vec{R}_{\{n\}} + \vec{G}) \cdot \vec{r}} \left[A_{\vec{G}, \{n\}}^{(\mu)} e^{-ik_{\vec{G}, \{n\}} \cdot \vec{r}} + B_{\vec{G}, \{n\}}^{(\mu)} e^{ik_{\vec{G}, \{n\}} \cdot \vec{r}} \right] (6)
\]

where the sum is carried out over all surface reciprocal lattice vectors \(\vec{G} \) and phonon occupations \(\{n\} \), \(\vec{R} \) is the atom's displacement parallel to the surface, and

\[
\vec{K}_{\{n\}} = \vec{K} - \sum_{\vec{q}, \nu} n_{\vec{q}, \nu} \vec{q}, \quad k_{\vec{G}, \{n\}}^2 = (\vec{K}_{\{n\}} + \vec{G})^2 = \frac{2m}{\hbar^2} (E - \sum_{\vec{q}, \nu} \hbar \omega_{\vec{q}, \nu} n_{\vec{q}, \nu}). \quad (7)
\]

Choose two trial functions \(|\Psi_t^{(1)}\rangle \) and \(|\Psi_t^{(2)}\rangle \), such that \(A_{\vec{G}, \{n\}}, t = A_{\vec{G}, \{n\}}, t^{(2)} \) and \(B_{\vec{G}, \{n\}}, t = B_{\vec{G}, \{n\}}, t^{(1)} \). Then the equation

\[
\int_V \langle \Psi_t^{(1)}|H - E|\Psi_t^{(2)}\rangle d\vec{r} = -\frac{i\hbar^2}{m} \sum_{\vec{G}, \{n\}} k_{\vec{G}, \{n\}} B_{\vec{G}, \{n\}}^{(1)*} \delta B_{\vec{G}, \{n\}}^{(2)}(8)
\]

where \(\delta B_{\vec{G}, \{n\}}^{(2)} = B_{\vec{G}, \{n\}}, t - B_{\vec{G}, \{n\}}, t^{(2)} \), is correct to first order in the errors of the wave functions.

This variational principle is of value because the integral can be evaluated analytically to lowest order in \(qa \) for trial functions which are eigenfunctions of \(H_0 \). These wavefunctions have the form \([3]\]

\[
\langle \vec{r}|\Psi_{\vec{R}, E, \{n\}} \rangle = \langle \{n\} \rangle \sum_{\vec{G}} e^{i(\vec{R}_{\{n\}} + \vec{G}) \cdot \vec{r}} \phi_{\vec{G}, \vec{R}, E, \{n\}}(z) (9)
\]

The set of all \(\phi_{\vec{G}}(z) \) for a given \(\vec{K}, E \) and \(\{n\} \) satisfy the following coupled equations, where \(E_a = E - \sum_{\vec{q}, \nu} \hbar \omega_{\vec{q}, \nu} n_{\vec{q}, \nu} \) and \(\sum_{\vec{n}} e^{\vec{n} \cdot \vec{r}} V_{\vec{n}}(z) = V(\vec{r}) \):
\[
\left[-\frac{\hbar^2 \partial^2}{2m} - \left(E_a - \frac{\hbar^2 (\vec{k}_{\{n\}} + \vec{G})^2}{2m} \right) \right] \phi_{\vec{G}}(z) = - \sum_{\vec{G}'} V_{\vec{G} - \vec{G}'}(z) \phi_{\vec{G}'}(z).
\]

(10)

Let \(|\Psi^{(2)}_{\{n_2\},o}\rangle \) be an eigenfunction of \(H_o \) with energy \(E \), crystal momentum \(\vec{k} \) and \(|\{n_2\}\rangle = |n_{\varphi',\nu}\rangle \ldots \) for which \(A_{\varphi'} = (m/\hbar k_{\varphi'})^{1/2} \) and all other \(A_i \)'s are 0. Let \(|\Psi^{(1)}_{\{n_1\},o}\rangle \) be an eigenfunction of \(H_o \) with eigenvalues \(E_i, \vec{K} \) and \(|\{n_1\}\rangle = |n_{\varphi',\nu} + 1\rangle \ldots \) for which \(A_{\varphi'} = (m/\hbar k_{\varphi'})^{1/2} \) and \(B_{\varphi'} \) is the only nonzero \(B \).

For these trial functions, the integral is \(\int_V \langle \Psi^{(1)}_{\{n_1\},o}|\vec{r}\rangle H_1(\vec{r})|\Psi^{(2)}_{\{n_2\},o}\rangle d\vec{r} \).

Expanding the \(\vec{u}_i \) in normal modes and rewriting yields

\[
H_1 = \sum_{\vec{q},\nu,\alpha} e^{-i\vec{q} \cdot \vec{R}} u_{\vec{q},\nu,\alpha} \sum_i \frac{\partial V}{\partial u_{i,\alpha}}(\vec{r}) e^{-i\vec{q} \cdot (\vec{R}_i - \vec{R})} + c.c.
\]

(11)

The second exponential can be ignored if the wavelength of the phonon is much larger than the range of the coupling potential, similar to \(a \) and \(b \), since unless \(q(\vec{R}_i - \vec{R}) \ll 1 \) \((\partial V/\partial u_i) \) will vanish. Furthermore, \(\sum_i \partial V/\partial u_{i,\alpha}(\vec{r}) = -\partial V(\vec{r})/\partial r_\alpha \) since \(V(\vec{r}; \{u_i\}) \) depends only on \(\vec{r} - \vec{u}_i \).

Finally, defining \(\vec{u}_{\vec{q},\nu} = \vec{U}_{\vec{q},\nu}(a_{\vec{q},\nu}^\dagger + a_{-\vec{q},\nu}) \) yields

\[
H_1 = -\sum_{\vec{q},\nu,\alpha} e^{-i\vec{q} \cdot \vec{R}} \frac{\partial V}{\partial r_\alpha}(\vec{r}) U_{\vec{q},\nu,\alpha}(a_{\vec{q},\nu}^\dagger + a_{-\vec{q},\nu}) + c.c.
\]

(12)

Transforming the resulting integral with (5a) and Green’s Theorem yields

\[
(n_{\varphi',\nu} + 1)^{1/2} U_{\vec{q},\nu,\alpha} \sum_{\vec{G},\vec{G}',\alpha} \int_S dS \left[e^{-i\vec{G} \cdot \vec{r}} \phi^{(1)*}_{\vec{G},\{n_1\}}(z) \frac{\partial}{\partial r_\alpha} \hat{n} \cdot \nabla \phi^{(2)}_{\vec{G}',\{n_2\}}(z) \right.
\]

\[
- \hat{n} \cdot \nabla \left(e^{-i\vec{G} \cdot \vec{r}} \phi^{(1)*}_{\vec{G},\{n_1\}}(z) \right) \frac{\partial}{\partial r_\alpha} \phi^{(2)}_{\vec{G}',\{n_2\}}(z) \left] \right)
\]

(13)

where \(\hat{n} \) is the unit normal to the surface \(S \) which bounds \(V \). Because of the small difference in atomic energy and parallel crystal momentum between \(|\Psi^{(1)}_{\{n_1\},o}\rangle \) and \(|\Psi^{(1)}_{\{n_2\},o}\rangle \), \(\phi^{(1)*}_{\vec{G},\{n_1\}} \) may be replaced by \(\phi^{(1)*}_{\vec{G},\{n_2\}} \).

The vanishing of the resulting integrals for \(n_x(\partial/\partial x) \) and \(n_y(\partial/\partial y) \) and evaluation of the remainder yields

\[
\frac{\hbar^2 U_{\vec{q},\nu,\alpha}(n_{\varphi',\nu} + 1)^{1/2}}{2m} \sum_{\vec{G}} \left[\phi_{\vec{G}}^{(1)*} \frac{\partial^2 \phi_{\vec{G}}^{(2)}}{\partial r_\alpha \partial z} - \frac{\partial \phi_{\vec{G}}^{(1)*}}{\partial z} \frac{\partial \phi_{\vec{G}}^{(2)}}{\partial r_\alpha} \right]_{z=\infty}
\]

(14)
Since \(k_{\tilde{G}_o}(B^{(1)*}B^{(2)})\tilde{G}_{o,(n_2),o} = k_0(A^{(1)*}A^{(2)})\tilde{G}_{o,(n_2),o} \), (14) is zero if \(\alpha \) denotes \(x \) or \(y \), and when \(\alpha \) denotes \(z \) it is \(-)(n_{\tilde{G},\nu}+1)^{1/2}U_{\tilde{G},\nu,z}\hbar(k_0+k_{\tilde{G}_o})\).

Define \(\delta B^{(1)}_{\tilde{G}_{o,(n_2)}} = -\delta B^{(2)*}_{\tilde{G}_{o,(n_2)}}(B^{(1)}/B^{(2)*})\tilde{G}_{o,(n_2),o} \).

The differential probability of scattering an atom into final angle \(\Omega \) with energy \(E_a \), per unit incident perpendicular flux is

\[
\frac{d^2P}{d\Omega dE_a} = (\pi\hbar^2k_{\tilde{G}_o}/m)|\delta B^{(1)}_{\tilde{G}_{o,(n_2)}}/A^{(1)}_{\tilde{G}_{o,(n_2)}}|^2 \rho(E_a)g(\hbar\omega_{\tilde{G},\nu};\tilde{Q}) (15)
\]

\[
= (k_{\tilde{G}_o}k/4\pi^2)(k_0+k_{\tilde{G}_o})^2U_{\tilde{G},\nu,z}(n_{\tilde{G},\nu}+1)|B^{(1)}_{\tilde{G}_{o,(n_2),o}}/A^{(1)}_{\tilde{G}_{o,(n_2)}}|^2 g(\hbar\omega_{\tilde{G},\nu};\tilde{Q})
\]

where \(k \) is the atom's final momentum, \(\rho(E_a) \) is the density per unit energy of atomic states with momentum in final angle \(\Omega \), and \(g(\hbar\omega_{\tilde{G},\nu};\tilde{Q}) \) is the density per unit energy of phonons with frequency \(\omega = \omega_{\tilde{G},\nu} \) and surface wavevector \(\tilde{Q} \).

For a target which is isotropic in the long wavelength limit, \(U_{\tilde{G},\nu,z} \) and \(g(\hbar\omega_{\tilde{G},\nu};\tilde{Q}) \) are well known, depend only on bulk elastic constants, density, \(\omega \) and \(\tilde{Q} \), and are given in simple form in Ref. 1. For non-isotropic targets, \(U_{\tilde{G},\nu,z} \) and \(g(\hbar\omega_{\tilde{G},\nu};\tilde{Q}) \) depend in a more complicated way on the bulk elastic constants, density, Miller indices of the surface, \(\omega \) and \(\tilde{Q} \).

Acknowledgments

This work is supported by the National Science Foundation through a graduate fellowship and Grant No. DMR87-03434 and by the U.S. Office of Naval Research through Grant No. N00014-89-J-1530.

References

